A Fast Eigen Solution for Homogeneous Quadratic Minimization With at Most Three Constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Bounds for Quadratic Optimization with Homogeneous Quadratic Constraints

We consider the NP-hard problem of finding a minimum norm vector in n-dimensional real or complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show that a semidefinite programming (SDP) relaxation for this nonconvex quadratically constrained quadratic program (QP) provides an O(m) approximation in the real case, and an O(m) approximation in the complex case. Moreo...

متن کامل

Approximation algorithms for homogeneous polynomial optimization with quadratic constraints

In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are nonconvex in general, t...

متن کامل

Chromaticity of Turan Graphs with At Most Three Edges Deleted

Let $P(G,lambda)$ be the chromatic polynomial of a graph $G$. A graph $G$ ischromatically unique if for any graph $H$, $P(H, lambda) = P(G,lambda)$ implies $H$ is isomorphic to $G$. In this paper, we determine the chromaticity of all Tur'{a}n graphs with at most three edges deleted. As a by product, we found many families of chromatically unique graphs and chromatic equivalence classes of graph...

متن کامل

Solutions to quadratic minimization problems with box and integer constraints

This paper presents a canonical duality theory for solving quadratic minimization problems subjected to either box or integer constraints. Results show that under Gao and Strang’s general global optimality condition, these well-known nonconvex and discrete problems can be converted into smooth concave maximization dual problems over closed convex feasible spaces without duality gap, and can be ...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Letters

سال: 2013

ISSN: 1070-9908,1558-2361

DOI: 10.1109/lsp.2013.2276791